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Rocket exhaust impingement on a ground surface 

By H I D E 0  YOSHIHARA 
General Dynamics/Astronautics, San Diego, California 

(Received 30 July 1962) 

The impingement of a rocket jet, exhausting into a vacuum, onto a solid surface 
is examined using the Newtonian approximation to analyse the transonic region. 
The jet exhaust into an unbounded vacuum required for this analysis is simplified 
as a quasi-radial flow using an exact calculation as a basis. Two examples are 
calculated giving the shock detachment distance and the ground pressures as 
a function of the rocket altitude. 

1. Introduction 
We shall be concerned here with a rocket jet exhausting into a vacuum and 

interacting with an infinite ground plane, oriented normal to the j e t a  problem 
which may be of pertinence to soft lunar landings. The determination of the 
resulting flow field is a complex one, and as a preliminary study we shall investi- 
gate the idealized case in which the flow is assumed to be inviscid, non-conducting, 
and non-reacting. 

The resultant flow pattern to be expected is shown schematically in figure 1. 
Here the jet expands abruptly at the rocket exit into a plume bounded by a 
straight boundary at zero pressure. Despite the apparent wide dispersal of the 
jet, the bulk of the exhaust mass will impinge on the ground. Near the ground 
a strong shock wave will form redirecting the jet along it. The location of the 
shock wave is not known in advance, but must be determined from the solution. 
The flow will be supersonic everywhere except in the imbedded subsonic domain 
bounded by DOACD. The flow upstream of the shock wave will thus not be 
influenced by the presence of the ground and will be identical to a jet flow 
expanding into a boundless vacuum. As a consequence we may divide the prob- 
lem into two parts. The first is the determination of the jet exhaust into an 
unbounded vacuum-a straightforward problem which may be calcuIated by 
the method of characteristics with initial conditions at the rocket exit and the 
vacuum condition a t  the plume boundary. The second problem is the calculation 
of the flow in the transonic region BCDOAB. For the determination of this 
mixed subsonic-supersonic region, we must prescribe in addition to the flow 
symmetry condition along DO, and the flow tangency condition along the ground 
OA, the pertinent dependent variables along the downstream side of the shock 
segment DCB. A formal difficulty arises in an explicit formulation of the above 
problem because of our apriori ignorance of the shock location. We shall see in 
the next section that in the Newtonian approach this will not offer any difficulty. 
The calculation of the remaining supersonic region downstream of the limiting 
Mach wave is a purely supersonic problem which may be constructed by the 
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method of characteristics using the transonic solution and the jet plume solution 
as initial conditions. In  the present paper we shall omit this calculation since 
the primary interest will be in the transonic problem which we shall next formu- 
late in detail. 

. 

All dependent variables 
prescribed behind shock 

L Zero normal velocity 

Symmetry condition 

X 

FIGURE 1. Flow pattern and boundary conditions for the transonic problem. 

2. The transonic problem 

follows : 
The pertinent axial symmetric flow equations for the present problems are as 

v .  (qpw) = 0, (1) 

pw.vw= -OF, (2)  
w.V(pp-7) = 0. (3) 

Here y is the ratio of specific heats, 5 is the radial co-ordinate, and 

w = */Go, p = p / p o ,  p = (j3-@o)/poG& 

where G, p ,  and @ are the velocity vector, density, and pressure, respectively, 
while the subscript zero denotes reference values corresponding to a point on the 
axis of symmetry just upstream of the shock. 

We seek now asymptotic forms of the above equations in the limit as 
e = (7- l)/(r+ 1)  + 0 using the transformations (see Freeman 1956 and Cole 
1961) 

x = x/d ,  y = y, 
q x ,  y) = e[u(x, y) + O(e)] ,  qx, g) = e&[v(x, y) + O(e)l, 
- 1 
P(Z7  y) = 1 4- e[P(x,  Y) f O ( E ) I 7  p ( x 7  y) = ; [P(X, Y) + O(e)17 
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where the (2 ,  y)-co-ordinate system is shown in figure 1, and U and V are respec- 
tively the axial and radial velocity components. Introducing these transforma- 
tions into the basic equations, we obtain as the resulting simplified equations 
(for the lowest order of E ) ,  

(5) ux -k vuy + V/y = 0, 

- p@uz + vu,) = Px, 
uv,+vv, = 0,  

upx+vp, = 0. 

Here the subscripts denote partial differentiation. 
Consider next the simplification of the shock jump conditions. The shock wave 

may be expected to be approximately parallel to the ground. Thus we set the 
shock slope 

For the jet flow just upstream of the shock we set 

e- tdqdy = dx/dy = qy). (9) 

1- u = 1, v = e-rv = ay, p = 1, and M = M, = const., (10) 

where M is the Mach number, and a and No will depend on the axial location of 
the shock. In  (10) the €4 stretching of V was required to obtain a non-degenerate 
jump condition; the stretching is of course permissible only if the flow inclination 
V upstream of the shock to the sonic point of the shock (point C of figure 1) is small. 
The simplified jump conditions thus become 

81 = o+ay ,  (11) 
u1 = p + ovl7 (12) 

p1 = pi, (13) 

and P i  = - [p+ (1  + 2aY) 01, (14) 

where p = 1 + (M;e)-l and the subscript 1 refers to the conditions just down- 
stream of the shock wave. Note that in the limiting process E + 0 we must now 
add a further requirement that M, -+ 00 such that p = const. 

Following the procedure of Freeman (1956), we transform our Newtonian 
equations by the hydrid co-ordinate transformation 

r = Y ,  isz = @ ( X , Y ) ,  (15) 

y u  = @,, yv = -@.,. (16) 

where @ is the stream function defined by 

Note from the conditions upstream of the shock, one has s = r at the shock wave. 

u ( x ,  y) = u*(r ,s) ,  v(x, y )  = w*(r,s), etc., Setting 

we obtain as the transformed equations 

p: = 0 or p* =p*(s),  ( 1 7 )  

v,* = 0 or v* = v*(s), (18) 

4 = (r/s)P:, (19) 

(u*/v*)s = (ps/r"*). (20) 

These remarkably simple results are essentially due to Freeman (1956). 
5-2 
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Equation (20) can also be integrated directly with the result 

At the surface of the ground, 5 = 0, we have u*/v* = 0. If we now use this result 
in (Zl), insert the values of u: and v: from (11) and ( la) ,  and differentiate (21) 
with resx>ect to r ,  we obtain 

where vT = O* + cLr. Equation (22) thus yields a differential equation for the deter- 
mination of the shock shape. 

Let us solve (22). Pertinent singular points of (22) occur a t  O* = r = 0, and at 
O* = 0, wf2 = p. The first point corresponds to a nodal point while the second is a 
saddle point with one asymptote corresponding to 8" = 0.t The latter point 
corresponds to the sonic point on the shock wave. Since B* = 0 is an integral of 
(22) between the singular points, our desired solution is thus 

P ( r )  = 0, (23) 

that is our shock wave is a straight line parallel to the ground. The shock detach- 
ment distance 6 can be obtained by the requirement of mass continuity near the 
axis of symmetry; we obtain in the original co-ordinate system, 

6 = Pe*/2a. (24) 

The pressure distribution may be obtained from (19) by integrating with respect 
to 5 and inserting the value of u,* from (21). The result for the distribution along 
the ground is 

The streamline slopes may be found from (21) and are given by 

p*(r ,  0 )  = -+/3 = const. (25) 

The streamlines can then be determined by integration. 

3. Numerical examples 
To utilize the simple results obtained in the previous section for the transonic 

region, we must now calculate the jet expansion into an unbounded vacuum. The 
method of characteristic calculations has been carried out for two cases using 
an IBM7090 program developed by J. Bowyer of General Dynamics/Astro- 
nautics. In  both cases, a conical nozzle of 15" half-angle is utilized with the follow- 
ing flow properties: 

Case A Case B$ 
Nozzle expansion ratio 40 4.56 
Ratio of specific heats 1.2 1.4 

t The other asymptote is given by €'* = in and will be of no interest in the present 

$ Results for case B were taken from Ward (1961). 
case. 
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FIGURE 2 .  (a)  Je t  exhaust plume (case A) showing lines of constant Mach number and 
flow inclination. Flow exhausts to the right from the indicated nozzle. y = 1.2; nozzle 
expansion ratio = 40; cone half-angle = 15'. ( b )  Jet  exhaust plume (case B) showing 
lines of constant Mach number and flow inclination. y = 1.4; nozzle expansion ratio 
= 4-56; cone half-angle = 15". 
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The results for the two cases are plotted in figures 2a and 2 b where lines of con- 
stant Mach number and streamline slopes are plotted. In  figure 3 we plot the 
radial variation of M,, and the streamline slopes for three axial locations x/ro = 5 ,  
10, 15 to check the validity of the simplified model used in (10). The location of 
the sonic point of the shock wave, the limit to which we use the model, is indicated 
for each position of the shock. 

0.8 I- 
,\ Location of sonic line I I 
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FIGURE 3. Radial variation of the Mach number and streamline slopes at various 
axial stations for cases A and B. 

From these figures, values of ,8 and a are determined as a function of the rocket 
altitude, and finally in figures 4 and 5 we plot the shock detachment distance 
and the value of the constant pressure on the ground, all as functions of the axial 
location of the shock wave. The results for the larger values of x/ro have been 
obtained by assuming the flow to be radial beyond the downstream limit of the 
calculations; these results are indicated by the dashed lines. Also shown in 
figure 5 are two experimental values for the shock detachment distance as found 
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FIGURE 5 .  Shock detachment distance as a function of the axial location of the shock 

waves. 0, Experimental results of Stitt (1961). yo = nozzle exit radius. 
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subjective nature of interpreting the schlieren pictures. For the cases in con- 
sideration, the difference in the nozzle expansion ratios for the theoretical and 
experimental results should not be significant. Clearly, the present theoretical 
approach should give predictions of engineering value. 

t The author is indebted to Mr Leonard Stitt, Head of the System Problems Section 
of NASA-Lewis Research Center, for furnishing enlarged schlieren pictures from experi- 
ments reported in Stitt (1961). 
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by Stitt-f for a 15' half-angle conical nozzle at an expansion ratio of 4. For the 
lower value of x/ro a crucial portion of the shock wave was obscured in the schlieren 
pictures so that it was necessary to extrapolate the shock shape. The remarkable 
agreement in the theoretical and experimental shock detachment distances must 
be somewhat tempered due to the known inexactness of the theory and the 

FIGURE 4. Ground pressure as a function of the axial location of the shock wave. 

(F-ijo)/poG: = 1+€P*, E = ( y -  l ) / (y+ 1). 

FIGURE 5 .  Shock detachment distance as a function of the axial location of the shock 
waves. 0, Experimental results of Stitt (1961). yo = nozzle exit radius. 

subjective nature of interpreting the schlieren pictures. For the cases in con- 
sideration, the difference in the nozzle expansion ratios for the theoretical and 
experimental results should not be significant. Clearly, the present theoretical 
approach should give predictions of engineering value. 

t The author is indebted to Mr Leonard Stitt, Head of the System Problems Section 
of NASA-Lewis Research Center, for furnishing enlarged schlieren pictures from experi- 
ments reported in Stitt (1961). 
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4. Remarks 
With the use of a simplified model of the jet exhaust and the Newtonian hypo- 

thesis, an extremely simple result was obtained for the present complex flow 
problem. The shock wave to this approximation was found to be parallel to the 
ground with the detachment distance given by a simple expression in terms of 
the Mach number and divergence of the jet flow upstream of the shock. The 
ground pressure distribution was constant at the stagnation value. 

The use of the simplified model of the jet flow is not essential and places a 
lower bound on the vehicle altitude for which we may use the resulting theory. 
The breakdown of the model arises primarily due to the non-constancy of the 
density and the Mach number along the shock wave. This defect can be readily 
remedied by assuming instead a parabolic radial variation of these quantities. 
The resulting complication in the differential equation is slight, but will require 

Jet boundary 

, Cornmession waves 
J/ 

I 
L 

FIGURE 6. Jet  exhaust into an ambient medium of small but finite pressure. Note that 
the location of the shock wave will depend upon the external ambient pressure. 

numerical integration. The use of the Newtonian hypothesis is, on the other hand, 
essential, and will yield a solution valid in the subsonic region except in the 
vicinity of the sonic line. It is to be remembered that the uniqueness of the 
Newtonian solution was determined by the shock-wave characteristics a t  the 
sonic point, just as in previous applications of the Newtonian theory. This 
procedure can thus be justified only by an a posteriori empirical verification of 
the resulting theory. 

Lastly, some comments will be of relevance regarding the modifications which 
might arise when the ambient pressure is non-zero but small as might be the case 
if one carries out an experiment of jet impingement. The expected jet exhaust 
into an unbounded medium for this case is shown schematically in figure 6. 
The essential modification here is the appearance of a shock wave which lies 
near the jet boundary, but which eventually reaches the axis as a normal shock 
wave in a Mach-disk configuration. This shock wave originates from the coales- 
cence of compression waves produced as the result of the interactions of the 
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left-running expansion waves from the nozzle with the constant-pressure jet- 
boundary. The shock wave forms a steeper angle with the streamlines than the 
Mach angles a t  points just upstream of the shock wave, so that the jet flow 
interior to the shock would be unaffected by the ambient pressure and will be 
identical with the case for zero ambient pressure a t  the same chamber conditions. 
Thus if the transonic region (including the supersonic region to the limiting Mach 
wave) arising from the infinite plate lies in the region interior to the shock wave, 
there will be no effect on the transonic flow as a result of the finiteness of the 
ambient pressure. 
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